Serveur d'exploration Covid et maladies cardiovasculaires

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19).

Identifieur interne : 000387 ( Main/Exploration ); précédent : 000386; suivant : 000388

Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19).

Auteurs : Arno R. Bourgonje [Pays-Bas] ; Amaal E. Abdulle [Pays-Bas] ; Wim Timens [Pays-Bas] ; Jan-Luuk Hillebrands [Pays-Bas] ; Gerjan J. Navis [Pays-Bas] ; Sanne J. Gordijn [Pays-Bas] ; Marieke C. Bolling [Pays-Bas] ; Gerard Dijkstra [Pays-Bas] ; Adriaan A. Voors [Pays-Bas] ; Albert Dme Osterhaus [Allemagne] ; Peter Hj Van Der Voort [Pays-Bas] ; Douwe J. Mulder [Pays-Bas] ; Harry Van Goor [Pays-Bas]

Source :

RBID : pubmed:32418199

Abstract

Angiotensin-converting enzyme 2 (ACE2) has been established as the functional host receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the current devastating worldwide pandemic of coronavirus disease 2019 (COVID-19). ACE2 is abundantly expressed in a variety of cells residing in many different human organs. In human physiology, ACE2 is a pivotal counter-regulatory enzyme to ACE by the breakdown of angiotensin II, the central player in the renin-angiotensin-aldosterone system (RAAS) and the main substrate of ACE2. Many factors have been associated with both altered ACE2 expression and COVID-19 severity and progression, including age, sex, ethnicity, medication, and several co-morbidities, such as cardiovascular disease and metabolic syndrome. Although ACE2 is widely distributed in various human tissues and many of its determinants have been well recognised, ACE2-expressing organs do not equally participate in COVID-19 pathophysiology, implying that other mechanisms are involved in orchestrating cellular infection resulting in tissue damage. Reports of pathologic findings in tissue specimens of COVID-19 patients are rapidly emerging and confirm the established role of ACE2 expression and activity in disease pathogenesis. Identifying pathologic changes caused by SARS-CoV-2 infection is crucially important as it has major implications for understanding COVID-19 pathophysiology and the development of evidence-based treatment strategies. Currently, many interventional strategies are being explored in ongoing clinical trials, encompassing many drug classes and strategies, including antiviral drugs, biological response modifiers, and RAAS inhibitors. Ultimately, prevention is key to combat COVID-19 and appropriate measures are being taken accordingly, including development of effective vaccines. In this review, we describe the role of ACE2 in COVID-19 pathophysiology, including factors influencing ACE2 expression and activity in relation to COVID-19 severity. In addition, we discuss the relevant pathological changes resulting from SARS-CoV-2 infection. Finally, we highlight a selection of potential treatment modalities for COVID-19. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

DOI: 10.1002/path.5471
PubMed: 32418199
PubMed Central: PMC7276767


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19).</title>
<author>
<name sortKey="Bourgonje, Arno R" sort="Bourgonje, Arno R" uniqKey="Bourgonje A" first="Arno R" last="Bourgonje">Arno R. Bourgonje</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Abdulle, Amaal E" sort="Abdulle, Amaal E" uniqKey="Abdulle A" first="Amaal E" last="Abdulle">Amaal E. Abdulle</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Internal Medicine, Division of Vascular Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Internal Medicine, Division of Vascular Medicine, University Medical Center Groningen, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Timens, Wim" sort="Timens, Wim" uniqKey="Timens W" first="Wim" last="Timens">Wim Timens</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
<orgName type="university">Université de Groningue</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hillebrands, Jan Luuk" sort="Hillebrands, Jan Luuk" uniqKey="Hillebrands J" first="Jan-Luuk" last="Hillebrands">Jan-Luuk Hillebrands</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
<orgName type="university">Université de Groningue</orgName>
</affiliation>
</author>
<author>
<name sortKey="Navis, Gerjan J" sort="Navis, Gerjan J" uniqKey="Navis G" first="Gerjan J" last="Navis">Gerjan J. Navis</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gordijn, Sanne J" sort="Gordijn, Sanne J" uniqKey="Gordijn S" first="Sanne J" last="Gordijn">Sanne J. Gordijn</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bolling, Marieke C" sort="Bolling, Marieke C" uniqKey="Bolling M" first="Marieke C" last="Bolling">Marieke C. Bolling</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dijkstra, Gerard" sort="Dijkstra, Gerard" uniqKey="Dijkstra G" first="Gerard" last="Dijkstra">Gerard Dijkstra</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Voors, Adriaan A" sort="Voors, Adriaan A" uniqKey="Voors A" first="Adriaan A" last="Voors">Adriaan A. Voors</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Osterhaus, Albert Dme" sort="Osterhaus, Albert Dme" uniqKey="Osterhaus A" first="Albert Dme" last="Osterhaus">Albert Dme Osterhaus</name>
<affiliation wicri:level="3">
<nlm:affiliation>Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Hanovre</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Van Der Voort, Peter Hj" sort="Van Der Voort, Peter Hj" uniqKey="Van Der Voort P" first="Peter Hj" last="Van Der Voort">Peter Hj Van Der Voort</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Critical Care Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Critical Care Medicine, University of Groningen, University Medical Center Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
<orgName type="university">Université de Groningue</orgName>
</affiliation>
</author>
<author>
<name sortKey="Mulder, Douwe J" sort="Mulder, Douwe J" uniqKey="Mulder D" first="Douwe J" last="Mulder">Douwe J. Mulder</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Internal Medicine, Division of Vascular Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Internal Medicine, Division of Vascular Medicine, University Medical Center Groningen, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Van Goor, Harry" sort="Van Goor, Harry" uniqKey="Van Goor H" first="Harry" last="Van Goor">Harry Van Goor</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
<orgName type="university">Université de Groningue</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32418199</idno>
<idno type="pmid">32418199</idno>
<idno type="doi">10.1002/path.5471</idno>
<idno type="pmc">PMC7276767</idno>
<idno type="wicri:Area/Main/Corpus">000265</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000265</idno>
<idno type="wicri:Area/Main/Curation">000265</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000265</idno>
<idno type="wicri:Area/Main/Exploration">000265</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19).</title>
<author>
<name sortKey="Bourgonje, Arno R" sort="Bourgonje, Arno R" uniqKey="Bourgonje A" first="Arno R" last="Bourgonje">Arno R. Bourgonje</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Abdulle, Amaal E" sort="Abdulle, Amaal E" uniqKey="Abdulle A" first="Amaal E" last="Abdulle">Amaal E. Abdulle</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Internal Medicine, Division of Vascular Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Internal Medicine, Division of Vascular Medicine, University Medical Center Groningen, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Timens, Wim" sort="Timens, Wim" uniqKey="Timens W" first="Wim" last="Timens">Wim Timens</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
<orgName type="university">Université de Groningue</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hillebrands, Jan Luuk" sort="Hillebrands, Jan Luuk" uniqKey="Hillebrands J" first="Jan-Luuk" last="Hillebrands">Jan-Luuk Hillebrands</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
<orgName type="university">Université de Groningue</orgName>
</affiliation>
</author>
<author>
<name sortKey="Navis, Gerjan J" sort="Navis, Gerjan J" uniqKey="Navis G" first="Gerjan J" last="Navis">Gerjan J. Navis</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gordijn, Sanne J" sort="Gordijn, Sanne J" uniqKey="Gordijn S" first="Sanne J" last="Gordijn">Sanne J. Gordijn</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bolling, Marieke C" sort="Bolling, Marieke C" uniqKey="Bolling M" first="Marieke C" last="Bolling">Marieke C. Bolling</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dijkstra, Gerard" sort="Dijkstra, Gerard" uniqKey="Dijkstra G" first="Gerard" last="Dijkstra">Gerard Dijkstra</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Voors, Adriaan A" sort="Voors, Adriaan A" uniqKey="Voors A" first="Adriaan A" last="Voors">Adriaan A. Voors</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Osterhaus, Albert Dme" sort="Osterhaus, Albert Dme" uniqKey="Osterhaus A" first="Albert Dme" last="Osterhaus">Albert Dme Osterhaus</name>
<affiliation wicri:level="3">
<nlm:affiliation>Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Hanovre</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Van Der Voort, Peter Hj" sort="Van Der Voort, Peter Hj" uniqKey="Van Der Voort P" first="Peter Hj" last="Van Der Voort">Peter Hj Van Der Voort</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Critical Care Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Critical Care Medicine, University of Groningen, University Medical Center Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
<orgName type="university">Université de Groningue</orgName>
</affiliation>
</author>
<author>
<name sortKey="Mulder, Douwe J" sort="Mulder, Douwe J" uniqKey="Mulder D" first="Douwe J" last="Mulder">Douwe J. Mulder</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Internal Medicine, Division of Vascular Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Internal Medicine, Division of Vascular Medicine, University Medical Center Groningen, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Van Goor, Harry" sort="Van Goor, Harry" uniqKey="Van Goor H" first="Harry" last="Van Goor">Harry Van Goor</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
<orgName type="university">Université de Groningue</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of pathology</title>
<idno type="eISSN">1096-9896</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Angiotensin-converting enzyme 2 (ACE2) has been established as the functional host receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the current devastating worldwide pandemic of coronavirus disease 2019 (COVID-19). ACE2 is abundantly expressed in a variety of cells residing in many different human organs. In human physiology, ACE2 is a pivotal counter-regulatory enzyme to ACE by the breakdown of angiotensin II, the central player in the renin-angiotensin-aldosterone system (RAAS) and the main substrate of ACE2. Many factors have been associated with both altered ACE2 expression and COVID-19 severity and progression, including age, sex, ethnicity, medication, and several co-morbidities, such as cardiovascular disease and metabolic syndrome. Although ACE2 is widely distributed in various human tissues and many of its determinants have been well recognised, ACE2-expressing organs do not equally participate in COVID-19 pathophysiology, implying that other mechanisms are involved in orchestrating cellular infection resulting in tissue damage. Reports of pathologic findings in tissue specimens of COVID-19 patients are rapidly emerging and confirm the established role of ACE2 expression and activity in disease pathogenesis. Identifying pathologic changes caused by SARS-CoV-2 infection is crucially important as it has major implications for understanding COVID-19 pathophysiology and the development of evidence-based treatment strategies. Currently, many interventional strategies are being explored in ongoing clinical trials, encompassing many drug classes and strategies, including antiviral drugs, biological response modifiers, and RAAS inhibitors. Ultimately, prevention is key to combat COVID-19 and appropriate measures are being taken accordingly, including development of effective vaccines. In this review, we describe the role of ACE2 in COVID-19 pathophysiology, including factors influencing ACE2 expression and activity in relation to COVID-19 severity. In addition, we discuss the relevant pathological changes resulting from SARS-CoV-2 infection. Finally, we highlight a selection of potential treatment modalities for COVID-19. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32418199</PMID>
<DateRevised>
<Year>2020</Year>
<Month>06</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1096-9896</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>May</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of pathology</Title>
<ISOAbbreviation>J. Pathol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19).</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/path.5471</ELocationID>
<Abstract>
<AbstractText>Angiotensin-converting enzyme 2 (ACE2) has been established as the functional host receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the current devastating worldwide pandemic of coronavirus disease 2019 (COVID-19). ACE2 is abundantly expressed in a variety of cells residing in many different human organs. In human physiology, ACE2 is a pivotal counter-regulatory enzyme to ACE by the breakdown of angiotensin II, the central player in the renin-angiotensin-aldosterone system (RAAS) and the main substrate of ACE2. Many factors have been associated with both altered ACE2 expression and COVID-19 severity and progression, including age, sex, ethnicity, medication, and several co-morbidities, such as cardiovascular disease and metabolic syndrome. Although ACE2 is widely distributed in various human tissues and many of its determinants have been well recognised, ACE2-expressing organs do not equally participate in COVID-19 pathophysiology, implying that other mechanisms are involved in orchestrating cellular infection resulting in tissue damage. Reports of pathologic findings in tissue specimens of COVID-19 patients are rapidly emerging and confirm the established role of ACE2 expression and activity in disease pathogenesis. Identifying pathologic changes caused by SARS-CoV-2 infection is crucially important as it has major implications for understanding COVID-19 pathophysiology and the development of evidence-based treatment strategies. Currently, many interventional strategies are being explored in ongoing clinical trials, encompassing many drug classes and strategies, including antiviral drugs, biological response modifiers, and RAAS inhibitors. Ultimately, prevention is key to combat COVID-19 and appropriate measures are being taken accordingly, including development of effective vaccines. In this review, we describe the role of ACE2 in COVID-19 pathophysiology, including factors influencing ACE2 expression and activity in relation to COVID-19 severity. In addition, we discuss the relevant pathological changes resulting from SARS-CoV-2 infection. Finally, we highlight a selection of potential treatment modalities for COVID-19. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.</AbstractText>
<CopyrightInformation>© 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bourgonje</LastName>
<ForeName>Arno R</ForeName>
<Initials>AR</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-5754-3821</Identifier>
<AffiliationInfo>
<Affiliation>Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Abdulle</LastName>
<ForeName>Amaal E</ForeName>
<Initials>AE</Initials>
<AffiliationInfo>
<Affiliation>Department of Internal Medicine, Division of Vascular Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Timens</LastName>
<ForeName>Wim</ForeName>
<Initials>W</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-4146-6363</Identifier>
<AffiliationInfo>
<Affiliation>Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hillebrands</LastName>
<ForeName>Jan-Luuk</ForeName>
<Initials>JL</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Navis</LastName>
<ForeName>Gerjan J</ForeName>
<Initials>GJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gordijn</LastName>
<ForeName>Sanne J</ForeName>
<Initials>SJ</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-3915-8609</Identifier>
<AffiliationInfo>
<Affiliation>Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bolling</LastName>
<ForeName>Marieke C</ForeName>
<Initials>MC</Initials>
<AffiliationInfo>
<Affiliation>Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dijkstra</LastName>
<ForeName>Gerard</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Voors</LastName>
<ForeName>Adriaan A</ForeName>
<Initials>AA</Initials>
<AffiliationInfo>
<Affiliation>Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Osterhaus</LastName>
<ForeName>Albert Dme</ForeName>
<Initials>AD</Initials>
<AffiliationInfo>
<Affiliation>Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>van der Voort</LastName>
<ForeName>Peter Hj</ForeName>
<Initials>PH</Initials>
<AffiliationInfo>
<Affiliation>Department of Critical Care Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mulder</LastName>
<ForeName>Douwe J</ForeName>
<Initials>DJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Internal Medicine, Division of Vascular Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>van Goor</LastName>
<ForeName>Harry</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>05</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Pathol</MedlineTA>
<NlmUniqueID>0204634</NlmUniqueID>
<ISSNLinking>0022-3417</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">angiotensin-converting enzyme 2 (ACE2)</Keyword>
<Keyword MajorTopicYN="N">coronavirus disease 2019 (COVID-19)</Keyword>
<Keyword MajorTopicYN="N">organ involvement</Keyword>
<Keyword MajorTopicYN="N">pathology</Keyword>
<Keyword MajorTopicYN="N">pathophysiology</Keyword>
<Keyword MajorTopicYN="N">renin-angiotensin-aldosterone system (RAAS)</Keyword>
<Keyword MajorTopicYN="N">risk factors</Keyword>
<Keyword MajorTopicYN="N">severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)</Keyword>
<Keyword MajorTopicYN="N">treatment</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>05</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32418199</ArticleId>
<ArticleId IdType="doi">10.1002/path.5471</ArticleId>
<ArticleId IdType="pmc">PMC7276767</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020; 323: 1239-1242.</Citation>
</Reference>
<Reference>
<Citation>Phan LT, Nguyen TV, Luong QC, et al. Importation and human-to-human transmission of a novel coronavirus in Vietnam. N Engl J Med 2020; 382: 872-874.</Citation>
</Reference>
<Reference>
<Citation>Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19), 16-24 February 2020. [Accessed 7 April 2020]. Available from: https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf</Citation>
</Reference>
<Reference>
<Citation>Lake MA. What we know so far: COVID-19 current clinical knowledge and research. Clin Med (Lond) 2020; 20: 124-127.</Citation>
</Reference>
<Reference>
<Citation>Phua J, Weng L, Ling L, et al. Intensive care management of COVID/19: challenges and recommendations. Lancet Respir Med 2020; 8: 506-517.</Citation>
</Reference>
<Reference>
<Citation>Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395: 1054-1062.</Citation>
</Reference>
<Reference>
<Citation>Hamming I, Timens W, Bulthuis MLC, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004; 203: 631-637.</Citation>
</Reference>
<Reference>
<Citation>Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181: 271-280.e8.</Citation>
</Reference>
<Reference>
<Citation>Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367: 1260-1263.</Citation>
</Reference>
<Reference>
<Citation>Wang LS, Wang YR, Ye DW, et al. Review of the 2019 novel coronavirus (COVID-19) based on current evidence. Int J Antimicrob Agents 2020; 55: 10594.</Citation>
</Reference>
<Reference>
<Citation>Sungnak W, Huang N, Bécavin C, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med 2020; 26: 681-687.</Citation>
</Reference>
<Reference>
<Citation>Voors AA, Pinto YM, Buikema H, et al. Dual pathway for angiotensin II formation in human internal mammary arteries. Br J Pharmacol 1998; 125: 1028-1032.</Citation>
</Reference>
<Reference>
<Citation>Ferrario CM, Trask AJ, Jessup JA. Advances in biochemical and functional roles of angiotensin-converting enzyme 2 and angiotensin-(1-7) in regulation of cardiovascular function. Am J Physiol Heart Circ Physiol 2005; 289: H2281-H2290.</Citation>
</Reference>
<Reference>
<Citation>Tikellis C, Thomas MC. Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease. Int J Pept 2012; 2012: 256294.</Citation>
</Reference>
<Reference>
<Citation>Sanchis-Gomar F, Lavie CJ, Perez-Quilis C, et al. Angiotensin-converting enzyme 2 and antihypertensives (angiotensin receptor blockers and angiotensin-converting enzyme inhibitors) in coronavirus disease 2019. Mayo Clin Proc 2020; 95: 1222-1230.</Citation>
</Reference>
<Reference>
<Citation>Hamming I, Cooper ME, Haagmans BL, et al. The emerging role of ACE2 in physiology and disease. J Pathol 2007; 212: 1-11.</Citation>
</Reference>
<Reference>
<Citation>Bernardi S, Toffoli B, Zennaro C, et al. High-salt diet increases glomerular ACE/ACE2 ratio leading to oxidative stress and kidney damage. Nephrol Dial Transplant 2012; 27: 1793-1800.</Citation>
</Reference>
<Reference>
<Citation>Gupte M, Boustany-Kari CM, Bharadwaj K, et al. ACE2 is expressed in mouse adipocytes and regulated by a high-fat diet. Am J Physiol Regul Integr Comp Physiol 2008; 295: R781-R788.</Citation>
</Reference>
<Reference>
<Citation>Hernández-Diázcouder A, Romero-Nava R, Carbó R, et al. High fructose intake and adipogenesis. Int J Mol Sci 2019; 20: 2787.</Citation>
</Reference>
<Reference>
<Citation>Hamming I, van Goor H, Turner AJ, et al. Differential regulation of renal angiotensin-converting enzyme (ACE) and ACE2 during ACE inhibition and dietary sodium restriction in healthy rats. Exp Physiol 2008; 93: 631-638.</Citation>
</Reference>
<Reference>
<Citation>Van de Veerdonk F, Netea MG, van Deuren M, et al. Kinins and cytokines in COVID-19: a comprehensive pathophysiological approach. Preprints 2020: 2020040023. https://doi.org/10.20944/preprints202004.0023.v1. Not peer reviewed.</Citation>
</Reference>
<Reference>
<Citation>Hashimoto T, Perlot T, Rehman A, et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 2012; 487: 477-481.</Citation>
</Reference>
<Reference>
<Citation>Lely AT, Hamming I, van Goor H, et al. Renal ACE2 expression in human kidney disease. J Pathol 2004; 204: 587-593.</Citation>
</Reference>
<Reference>
<Citation>Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; 426: 450-454.</Citation>
</Reference>
<Reference>
<Citation>Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 2005; 11: 875-879.</Citation>
</Reference>
<Reference>
<Citation>Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005; 436: 112-116.</Citation>
</Reference>
<Reference>
<Citation>Li Y, Zeng Z, Cao Y, et al. Angiotensin-converting enzyme 2 prevents lipopolysaccharide-induced rat acute lung injury via suppressing the ERK1/2 and NF-κB signaling pathways. Sci Rep 2016; 6: 27911.</Citation>
</Reference>
<Reference>
<Citation>Ye R, Liu Z. ACE2 exhibits protective effects against LPS-induced acute lung injury in mice by inhibiting the LPS-TLR4 pathway. Exp Mol Pathol 2020; 113: 104350.</Citation>
</Reference>
<Reference>
<Citation>Yang XH, Deng W, Tong Z, et al. Mice transgenic for human angiotensin-converting enzyme 2 provide a model for SARS coronavirus infection. Comp Med 2007; 57: 450-459.</Citation>
</Reference>
<Reference>
<Citation>Gaur P, Saini S, Vats P, et al. Regulation, signalling and functions of hormonal peptides in pulmonary vascular remodelling during hypoxia. Endocrine 2018; 59: 466-480.</Citation>
</Reference>
<Reference>
<Citation>Velkoska E, Patel SK, Burrell LM. Angiotensin converting enzyme 2 and diminazene: role in cardiovascular and blood pressure regulation. Curr Opin Nephrol Hypertens 2016; 25: 384-395.</Citation>
</Reference>
<Reference>
<Citation>Luo Y, Liu C, Guan T, et al. Association of ACE2 genetic polymorphisms with hypertension-related target organ damages in south Xinjiang. Hypertens Res 2019; 42: 681-689.</Citation>
</Reference>
<Reference>
<Citation>Cao Y, Li L, Feng Z, et al. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov 2020; 6: 11.</Citation>
</Reference>
<Reference>
<Citation>Hussain M, Jabeen N, Raza F, et al. Structural variations in human ACE2 may influence its binding with SARS-CoV-2 spike protein. J Med Virol 2020. https://doi.org/10.1002/jmv.25832 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Chen Y, Li L. SARS-CoV-2: virus dynamics and host response. Lancet Infect Dis 2020; 20: 515-516.</Citation>
</Reference>
<Reference>
<Citation>Verity R, Okell LC, Dorigatti I, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis 2020; 20: 669-677.</Citation>
</Reference>
<Reference>
<Citation>Cai H. Sex difference and smoking predisposition in patients with COVID-19. Lancet Respir Med 2020; 8: e20.</Citation>
</Reference>
<Reference>
<Citation>Zhao Y, Zhao Z, Wang Y, et al. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. bioRxiv 2020. https://doi.org/10.1101/2020.01.26.919985. Not peer reviewed.</Citation>
</Reference>
<Reference>
<Citation>Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020; 8: 475-481.</Citation>
</Reference>
<Reference>
<Citation>Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382: 1708-1720.</Citation>
</Reference>
<Reference>
<Citation>Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ 2020; 368: m1091.</Citation>
</Reference>
<Reference>
<Citation>Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol 2016; 16: 626-638.</Citation>
</Reference>
<Reference>
<Citation>Araujo FC, Milsted A, Watanabe IK, et al. Similarities and differences of X and Y chromosome homologous genes, SRY and SOX3, in regulating the renin-angiotensin system promoters. Physiol Genomics 2015; 47: 177-186.</Citation>
</Reference>
<Reference>
<Citation>White MC, Fleeman R, Arnold AC. Sex differences in the metabolic effects of the renin-angiotensin system. Biol Sex Differ 2019; 10: 31.</Citation>
</Reference>
<Reference>
<Citation>Sama IE, Ravera A, Santema BT, et al. Circulating plasma concentrations of ACE2 in men and women with heart failure and effects of renin-angiotensin-aldosterone-inhibitors: potential implications for coronavirus SARS-CoV-2 infected patients. Eur Heart J 2020; 41: 1810-1817.</Citation>
</Reference>
<Reference>
<Citation>Ryan DH, Ravussin E, Heymsfield S. COVID 19 and the patient with obesity - the editors speak out. Obesity (Silver Spring) 2020; 28: 847.</Citation>
</Reference>
<Reference>
<Citation>Peng YD, Meng K, Guan HQ, et al. Clinical characteristics and outcomes of 112 cardiovascular disease patients infected by 2019-nCoV. Zhonghua Xin Xue Guan Bing Za Zhi 2020; 48: E004.</Citation>
</Reference>
<Reference>
<Citation>Wu J, Li W, Shi X, et al. Early antiviral treatment contributes to alleviate the severity and improve the prognosis of patients with novel coronavirus disease (COVID-19). J Intern Med 2020; https://doi.org/10.1111/joim.13063 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Cai Q, Chen F, Wang T, et al. Obesity and COVID-19 severity in a designated hospital in Shenzhen, China. Diabetes Care 2020. https://doi.org/10.2337/dc20-0576 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Goyal P, Choi JJ, Pinheiro LC, et al. Clinical characteristics of Covid-19 in New York City. N Engl J Med 2020; https://doi.org/10.1056/NEJMc2010419 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Maier HE, Lopez R, Sanchez N, et al. Obesity increases the duration of influenza A virus shedding in adults. J Infect Dis 2018; 218: 1378-1382.</Citation>
</Reference>
<Reference>
<Citation>Louie JK, Acosta M, Winter K, et al. Factors associated with death or hospitalization due to pandemic 2009 influenza A(H1N1) infection in California. JAMA 2009; 302: 1896-1902.</Citation>
</Reference>
<Reference>
<Citation>Honce R, Schultz-Cherry S. Impact of obesity on influenza A virus pathogenesis, immune response, and evolution. Front Immunol 2019; 10: 1071.</Citation>
</Reference>
<Reference>
<Citation>Kassir R. Risk of COVID-19 for patients with obesity. Obes Rev 2020; 21: e13034.</Citation>
</Reference>
<Reference>
<Citation>Jia X, Yin C, Lu S, et al. Two things about COVID-19 might need attention. Preprints 2020: 2020020315. https://doi.org/10.20944/preprints202002.0315.v1 Not peer reviewed.</Citation>
</Reference>
<Reference>
<Citation>Gupte M, Thatcher SE, Boustany-Kari CM, et al. Angiotensin converting enzyme 2 contributes to sex differences in the development of obesity hypertension in C57BL/6 mice. Arterioscler Thromb Vasc Biol 2012; 32: 1392-1399.</Citation>
</Reference>
<Reference>
<Citation>Ibrahim HS, Froemming GRA, Omar E, et al. ACE2 activation by xanthenone prevents leptin-induced increases in blood pressure and proteinuria during pregnancy in Sprague-Dawley rats. Reprod Toxicol 2014; 49: 155-161.</Citation>
</Reference>
<Reference>
<Citation>Bellmeyer A, Martino JM, Chandel NS, et al. Leptin resistance protects mice from hyperoxia-induced acute lung injury. Am J Respir Crit Care Med 2007; 175: 587-594.</Citation>
</Reference>
<Reference>
<Citation>Van der Voort P, Moser J, Zandstra DF, et al. A clinical and biological framework on the role of visceral fat tissue and leptin in SARS-CoV-2 infection related respiratory failure. medRxiv 2020. https://doi.org/10.1101/2020.04.30.20086108 Not peer reviewed.</Citation>
</Reference>
<Reference>
<Citation>Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis. Int J Infect Dis 2020; 94: 91-95.</Citation>
</Reference>
<Reference>
<Citation>Jordan RE, Adab P, Cheng KK. Covid-19: risk factors for severe disease and death. BMJ 2020; 368: m1198.</Citation>
</Reference>
<Reference>
<Citation>De Wilde AH, Zevenhoven-Dobbe JC, van der Meer Y, et al. Cyclosporin A inhibits the replication of diverse coronaviruses. J Gen Virol 2011; 92: 2542-2548.</Citation>
</Reference>
<Reference>
<Citation>Schett G, Sticherling M, Neurath MF. COVID-19: risk for cytokine targeting in chronic inflammatory diseases? Nat Rev Immunol 2020; 20: 271-272.</Citation>
</Reference>
<Reference>
<Citation>Das S, Johnson DB. Immune-related adverse events and anti-tumor efficacy of immune checkpoint inhibitors. J Immunother Cancer 2019; 7: 306.</Citation>
</Reference>
<Reference>
<Citation>Murthy H, Iqbal M, Chavez JC, et al. Cytokine release syndrome: current perspectives. Immunotargets Ther 2019; 8: 43-52.</Citation>
</Reference>
<Reference>
<Citation>Anderson R, Rapoport BL. Immune dysregulation in cancer patients undergoing immune checkpoint inhibitor treatment and potential predictive strategies for future clinical practice. Front Oncol 2018; 8: 80.</Citation>
</Reference>
<Reference>
<Citation>Bersanelli M. Controversies about COVID-19 and anticancer treatment with immune checkpoint inhibitors. Immunotherapy 2020; 12: 269-273.</Citation>
</Reference>
<Reference>
<Citation>Stroud CR, Hegde A, Cherry C, et al. Tocilizumab for the management of immune mediated adverse events secondary to PD-1 blockade. J Oncol Pharm Pract 2019; 25: 551-557.</Citation>
</Reference>
<Reference>
<Citation>Ascierto PA, Fox B, Urba W, et al. Insights from immuno-oncology: the Society for Immunotherapy of Cancer statement on access to IL-6-targeting therapies for COVID-19. J Immunother Cancer 2020; 8: e000930.</Citation>
</Reference>
<Reference>
<Citation>Chen Q, Quan B, Li X, et al. A report of clinical diagnosis and treatment of nine cases of coronavirus disease 2019. J Med Virol 2020; 92: 683-687.</Citation>
</Reference>
<Reference>
<Citation>Ge H, Wang X, Yuan X, et al. The epidemiology and clinical information about COVID-19. Eur J Clin Microbiol Infect Dis 2020; 39: 1011-1019.</Citation>
</Reference>
<Reference>
<Citation>Zhou M, Zhang X, Qu J. Coronavirus disease 2019 (COVID-19): a clinical update. Front Med 2020; 14: 126-135.</Citation>
</Reference>
<Reference>
<Citation>He F, Deng Y, Li W. Coronavirus disease 2019: what we know? J Med Virol 2020; https://doi.org/10.1002/jmv.25766 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020; 579: 265-269.</Citation>
</Reference>
<Reference>
<Citation>Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579: 270-273.</Citation>
</Reference>
<Reference>
<Citation>Barton LM, Duval EJ, Stroberg E, et al. COVID-19 autopsies, Oklahoma, USA. Am J Clin Pathol 2020; 153: 725-733.</Citation>
</Reference>
<Reference>
<Citation>Tian S, Xiong Y, Liu H, et al. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod Pathol 2020; 33: 1007-1014.</Citation>
</Reference>
<Reference>
<Citation>Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; 8: 420-422.</Citation>
</Reference>
<Reference>
<Citation>Tian S, Hu W, Niu L, et al. Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J Thorac Oncol 2020; 15: 700-704.</Citation>
</Reference>
<Reference>
<Citation>Zhang H, Zhou P, Wei Y, et al. Histopathologic changes and SARS-CoV-2 immunostaining in the lung of a patient eith COVID-19. Ann Intern Med 2020; 172: 629-632.</Citation>
</Reference>
<Reference>
<Citation>Meng T, Cao H, Zhang H, et al. The insert sequence in SARS-CoV-2 enhances spike protein cleavage by TMPRSS. bioRxiv 2020; https://doi.org/10.1101/2020.02.08.926006 Not peer reviewed.</Citation>
</Reference>
<Reference>
<Citation>Leung JM, Yang CX, Tam A, et al. ACE-2 expression in the small airway epithelia of smokers and COPD patients: implications for COVID-19. Eur Respir J 2020; 55: 2000688.</Citation>
</Reference>
<Reference>
<Citation>Vardavas CI, Nikitara K. COVID-19 and smoking: a systematic review of the evidence. Tob Induc Dis 2020; 18: 20.</Citation>
</Reference>
<Reference>
<Citation>Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol 2020; https://doi.org/10.1001/jamacardio.2020.0950 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020; https://doi.org/10.1001/jamacardio.2020.1017 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Hendren NS, Drazner MH, Boskurt B, et al. Description and proposed management of the acute COVID-19 cardiovascular syndrome. Circulation 2020; 141: 1903-1914.</Citation>
</Reference>
<Reference>
<Citation>Madjid M, Safavi-Naeini P, Solomon SD, et al. Potential effects of coronaviruses on the cardiovascular system: a review. JAMA Cardiol 2020; https://doi.org/10.1001/jamacardio.2020.1286 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Fox SE, Akmatbekov A, Harbert JL, et al. Pulmonary and cardiac pathology in Covid-19: the first autopsy series from New Orleans. medRxiv 2020. https://doi.org/10.1101/2020.04.06.20050575 Not peer reviewed.</Citation>
</Reference>
<Reference>
<Citation>Chen L, Li X, Chen M, et al. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res 2020; 116: 1097-1100.</Citation>
</Reference>
<Reference>
<Citation>Tavazzi G, Pellegrini C, Maurelli M, et al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur J Heart Fail 2020; 22: 911-915.</Citation>
</Reference>
<Reference>
<Citation>Zhang YH, Zhang YH, Dong XF, et al. ACE2 and Ang-(1-7) protect endothelial cell function and prevent early atherosclerosis by inhibiting inflammatory response. Inflamm Res 2015; 64: 253-260.</Citation>
</Reference>
<Reference>
<Citation>Fraga-Silva RA, Sorg BS, Wankhede M, et al. ACE2 activation promotes antithrombotic activity. Mol Med 2020; 16: 210-215.</Citation>
</Reference>
<Reference>
<Citation>Monteil V, Kwon H, Prado P, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 2020; 181: 905-913.e7.</Citation>
</Reference>
<Reference>
<Citation>Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020; 395: 1417-1418.</Citation>
</Reference>
<Reference>
<Citation>Miller SE, Brealey JK. Visualization of putative coronavirus in kidney. Kidney Int 2020; https://doi.org/10.1016/j.kint.2020.05.004 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Zhang T, Sun LX, Feng RE. [Comparison of clinical and pathological features between severe acute respiratory syndrome and coronavirus disease 2019]. Zhonghua Jie He He Hu Xi Za Zhi 2020; 43: E040 [Article in Chinese].</Citation>
</Reference>
<Reference>
<Citation>Tang N, Li D, Wang X, et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020; 18: 844-847.</Citation>
</Reference>
<Reference>
<Citation>Bonow RO, Fonarow GC, O’Gara PT, et al. Association of coronavirus disease 2019 (COVID-19) with myocardial injury and mortality. JAMA Cardiol 2020; https://doi.org/10.1001/jamacardio.2020.1105 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 2020; 191: 145-147.</Citation>
</Reference>
<Reference>
<Citation>Poissy J, Goutay J, Caplan M, et al. Pulmonary embolism in COVID-19 patients: awareness of an increased prevalence. Circulation 2020; https://doi.org/10.1161/CIRCULATIONAHA.120.047430 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Escher R, Breakey N, Lämmle B. Severe COVID-19 infection associated with endothelial activation. Thromb Res 2020; 190: 62.</Citation>
</Reference>
<Reference>
<Citation>Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 2020; 130: 2620-2629.</Citation>
</Reference>
<Reference>
<Citation>Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; 323: 1061-1069.</Citation>
</Reference>
<Reference>
<Citation>Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395: 497-506.</Citation>
</Reference>
<Reference>
<Citation>Li X, Wang L, Yan S, et al. Clinical characteristics of 25 death cases with COVID-19: a retrospective review of medical records in a single medical center, Wuhan, China. Int J Infect Dis 2020; 94: 128-132.</Citation>
</Reference>
<Reference>
<Citation>Ranucci M, Ballotta A, Di Dedda U, et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost 2020; https://doi.org/10.1111/jth.14854 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Engl J Med 2020; 382: e38.</Citation>
</Reference>
<Reference>
<Citation>Takahashi Y, Haga S, Ishizaka Y, et al. Autoantibodies to angiotensin-converting enzyme 2 in patients with connective tissue diseases. Arthritis Res Ther 2010; 12: R85.</Citation>
</Reference>
<Reference>
<Citation>Sawalha AH, Zhao M, Coit P, et al. Epigenetic dysregulation of ACE2 and interferon-regulated genes might suggest increased COVID-19 susceptibility and severity in lupus patients. Clin Immunol 2020; 215: 108410.</Citation>
</Reference>
<Reference>
<Citation>Panigada M, Bottino N, Tagliabue P, et al. Hypercoagulability of COVID-19 patients in intensive care unit. A report of thromboelastography findings and other parameters of hemostasis. J Thromb Haemost 2020; https://doi.org/10.1111/jth.14850 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Cheung KS, Hung IF, Chan PP, et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from the Hong Kong cohort and systematic review and meta-analysis. Gastroenterology 2020; https://doi.org/10.1053/j.gastro.2020.03.065 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020; 382: 929-936.</Citation>
</Reference>
<Reference>
<Citation>Tang A, Tong ZD, Wang HL, et al. Detection of novel coronavirus by RT-PCR in stool specimen from asymptomatic child, China. Emerg Infect Dis 2020; 26: 1337-1339.</Citation>
</Reference>
<Reference>
<Citation>Pan L, Mu M, Yang P, et al. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross-sectional, multicenter study. Am J Gastroenterol 2020; 115: 766-773.</Citation>
</Reference>
<Reference>
<Citation>Zhang H, Kang Z, Gong H, et al. Digestive system is a potential route of COVID-19: an analysis of single-cell coexpression pattern of key proteins in viral entry process. Gut 2020; 69: 1010-1018.</Citation>
</Reference>
<Reference>
<Citation>Ning L, Shan G, Sun Z, et al. Quantitative proteomic analysis reveals the deregulation of nicotinamide adenine dinucleotide metabolism and CD38 in inflammatory bowel disease. Biomed Res Int 2019; 2019: 3950628.</Citation>
</Reference>
<Reference>
<Citation>Garg M, Burrell LM, Velkoska E, et al. Upregulation of circulating components of the alternative renin-angiotensin system in inflammatory bowel disease: a pilot study. J Renin Angiotensin Aldosterone Syst 2015; 16: 559-569.</Citation>
</Reference>
<Reference>
<Citation>Garg M, Royce SG, Tikellis C, et al. Imbalance of the renin-angiotensin system may contribute to inflammation and fibrosis in IBD: a novel therapeutic target? Gut 2020; 69: 841-851.</Citation>
</Reference>
<Reference>
<Citation>Neurath MF. Covid-19 and immunomodulation in IBD. Gut 2020; 69: 1335-1342.</Citation>
</Reference>
<Reference>
<Citation>Xiao F, Tang M, Zheng X, et al. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology 2020; 158: 1831-1833.e3.</Citation>
</Reference>
<Reference>
<Citation>Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 2020; https://doi.org/10.1001/jama.2020.3786 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020; 581: 465-469.</Citation>
</Reference>
<Reference>
<Citation>Fan Z, Chen L, Li J, et al. Clinical features of COVID-19-related liver functional abnormality. Clin Gastroenterol Hepatol 2020; 18: 1561-1566.</Citation>
</Reference>
<Reference>
<Citation>Gu J, Han B, Wang J. COVID-19: gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology 2020; 158: 1518-1519.</Citation>
</Reference>
<Reference>
<Citation>Guan GW, Gao L, Wang JW, et al. [Exploring the mechanism of liver enzyme abnormalities in patients with novel coronavirus-infected pneumonia]. Zhonghua Gan Zang Bing Za Zhi 2020; 28: 100-106 [Article in Chinese].</Citation>
</Reference>
<Reference>
<Citation>Xu L, Liu J, Lu M, et al. Liver injury during highly pathogenic human coronavirus infections. Liver Int 2020; 40: 998-1004.</Citation>
</Reference>
<Reference>
<Citation>Chai XQ, Hu LF, Zhang Y, et al. Specific ACE2 expression in cholangiocytes may cause liver damage after 2019-nCoV infection. bioRxiv 2020; https://doi.org/10.1101/2020.02.03.931766 [Epub ahead of print] Not peer reviewed.</Citation>
</Reference>
<Reference>
<Citation>Durvasula R, Wellington T, McNamara E, et al. COVID-19 and kidney failure in the acute care setting: our experience from Seattle. Am J Kidney Dis 2020; https://doi.org/10.1053/j.ajkd.2020.04.001 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Cheng Y, Luo R, Wang K, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int 2020; 97: 829-838.</Citation>
</Reference>
<Reference>
<Citation>Li Z, Wu M, Guo J, et al. Caution on kidney dysfunctions of COVID-19 patients. medRxiv 2020. https://doi.org/10.1101/2020.02.08.20021212 Not peer reviewed.</Citation>
</Reference>
<Reference>
<Citation>Chu KH, Tsang WK, Tang CS, et al. Acute renal impairment in coronavirus-associated severe acute respiratory syndrome. Kidney Int 2005; 67: 698-705.</Citation>
</Reference>
<Reference>
<Citation>Tisoncik JR, Korth MJ, Simmons CP, et al. Into the eye of the cytokine storm. Microbiol Mol Biol Rev 2012; 76: 16-32.</Citation>
</Reference>
<Reference>
<Citation>Huang KJ, Su IJ, Theron M, et al. An interferon-gamma-related cytokine storm in SARS patients. J Med Virol 2005; 75: 185-194.</Citation>
</Reference>
<Reference>
<Citation>Diao B, Feng Z, Wang C, et al. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. medRxiv 2020. https://doi.org/10.1101/2020.03.04.20031120 Not peer reviewed.</Citation>
</Reference>
<Reference>
<Citation>Pan XW, Xu D, Zhang H, et al. Identification of a potential mechanism of acute kidney injury during the Covid-19 outbreak: a study based on single-cell transcriptome analysis. Intensive Care Med 2020; https://doi.org/10.1007/s00134-020-06026-1 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Su H, Yang M, Wan C, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int 2020; https://doi.org/10.1016/j.kint.2020.04.003 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Zhang JJ, Dong X, Cao YY, et al. Clinical characteristics of 140 patients infected with SARS-Cov-2 in Wuhan, China. Allergy 2020; https://doi.org/10.1111/all.14238 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Estébanez A, Pérez-Santiago L, Silva E, et al. Cutaneous manifestations in COVID-19: a new contribution. J Eur Acad Dermatol Venereol 2020; https://doi.org/10.1111/jdv.16474 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Fernandez-Nieto D, Ortega-Quijano D, Segurado-Miravalles G, et al. Comment on: cutaneous manifestations in COVID-19: a first perspective. Safety concerns of clinical images and skin biopsies. J Eur Acad Dermatol Venereol 2020; https://doi.org/10.1111/jdv.16470 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Henry D, Ackerman M, Sancelme E, et al. Urticarial eruption in COVID-19 infection. J Eur Acad Dermatol Venereol 2020; https://doi.org/10.1111/jdv.16472 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Hunt M, Koziatek C. A case of COVID-19 pneumonia in a young male with full body rash as a presenting symptom. Clin Pract Cases Emerg Med 2020; 4: 219-221.</Citation>
</Reference>
<Reference>
<Citation>Jimenez-Cauhe J, Ortega-Quijano D, Prieto-Barrios M, et al. Reply to "COVID-19 can present with a rash and be mistaken for Dengue": petechial rash in a patient with COVID-19 infection. J Am Acad Dermatol 2020; https://doi.org/10.1016/j.jaad.2020.04.016 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Joob B, Wiwanitkit V. COVID-19 can present with a rash and be mistaken for Dengue. J Am Acad Dermatol 2020; 82: e177.</Citation>
</Reference>
<Reference>
<Citation>Zulfiqar AA, Lorenzo-Villalba N, Hassler P, et al. Immune thrombocytopenic purpura in a patient with Covid-19. N Engl J Med 2020; 382: e43.</Citation>
</Reference>
<Reference>
<Citation>Mahé A, Birckel E, Krieger S, et al. A distinctive skin rash associated with coronavirus disease 2019? J Eur Acad Dermatol Venereol 2020; https://doi.org/10.1111/jdv.16471 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Recalcati S. Cutaneous manifestations in COVID-19: a first perspective. J Eur Acad Dermatol Venereol 2020; 34: e212-e213.</Citation>
</Reference>
<Reference>
<Citation>Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res 2020; https://doi.org/10.1016/j.trsl.2020.04.007 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Ding Y, He L, Zhang Q, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol 2004; 203: 622-630.</Citation>
</Reference>
<Reference>
<Citation>Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet 2020; 395: 809-815.</Citation>
</Reference>
<Reference>
<Citation>Yu N, Li W, Kang Q, et al. Clinical features and obstetric and neonatal outcomes of pregnant patients with COVID-19 in Wuhan, China: a retrospective, single-centre, descriptive study. Lancet Infect Dis 2020; 20: 559-564.</Citation>
</Reference>
<Reference>
<Citation>Wang S, Guo L, Chen L, et al. A case report of neonatal COVID-19 infection in China. Clin Infect Dis 2020; https://doi.org/10.1093/cid/ciaa225 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Yang H, Wang C, Poon LC. Novel coronavirus infection and pregnancy. Ultrasound Obstet Gynecol 2020; 55: 435-437.</Citation>
</Reference>
<Reference>
<Citation>Dong L, Tian J, He S, et al. Possible vertical transmission of SARS-CoV-2 from an infected mother to her newborn. JAMA 2020; 323: 1846-1848.</Citation>
</Reference>
<Reference>
<Citation>Peng Z, Wang J, Mo Y, et al. Unlikely SARS-CoV-2 vertical transmission from mother to child: a case report. J Infect Public Health 2020; 13: 818-820.</Citation>
</Reference>
<Reference>
<Citation>Zeng L, Xia S, Yuan W, et al. Neonatal early-onset infection with SARS-CoV-2 in 33 neonates born to mothers with COVID-19 in Wuhan, China. JAMA Pediatr 2020; https://doi.org/10.1001/jamapediatrics.2020.0878 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Karimi-Zarchi M, Neamatzadeh H, Dastgheib SA, et al. Vertical transmission of coronavirus disease 2019 (COVID-19) from infected pregnant mothers to neonates: a review. Fetal Pediatr Pathol 2020; 1-5. https://doi.org/10.1080/15513815.2020.1747120 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Coronado Munoz A, Nawaratne U, McMann D, et al. Late-onset neonatal sepsis in a patient with Covid-19. N Engl J Med 2020; 382: e49.</Citation>
</Reference>
<Reference>
<Citation>Maxwell C, McGeer A, Tai KFY, et al. No. 225 - Management guidelines for obstetric patients and neonates born to mothers with suspected or probable severe acute respiratory syndrome (SARS). J Obstet Gynaecol Can 2017; 39: e130-e137.</Citation>
</Reference>
<Reference>
<Citation>Ng WF, Wong SF, Lam A, et al. The placentas of patients with severe acute respiratory syndrome: a pathophysiological evaluation. Pathology 2006; 38: 210-218.</Citation>
</Reference>
<Reference>
<Citation>Valdés G, Neves LA, Anton L, et al. Distribution of angiotensin-(1-7) and ACE2 in human placentas of normal and pathological pregnancies. Placenta 2006; 27: 200-207.</Citation>
</Reference>
<Reference>
<Citation>Li M, Chen L, Zhang J, et al. The SARS-CoV-2 receptor ACE2 expression of maternal-fetal interface and fetal organs by single-cell transcriptome study. PLoS One 2020; 15: e0230295.</Citation>
</Reference>
<Reference>
<Citation>Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol 2020; 92: 552-555.</Citation>
</Reference>
<Reference>
<Citation>Mao L, Jin H, Wang M, et al. Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China. JAMA Neurol 2020; 77: 683-690.</Citation>
</Reference>
<Reference>
<Citation>Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395: 507-513.</Citation>
</Reference>
<Reference>
<Citation>Steardo L, Steardo L Jr, Zorec R, et al. Neuroinfection may potentially contribute to pathophysiology and clinical manifestations of COVID-19. Acta Physiol (Oxf) 2020: e13473.</Citation>
</Reference>
<Reference>
<Citation>Gowrisankar YV, Clark MA. Angiotensin II regulation of angiotensin-converting enzymes in spontaneously hypertensive rat primary astrocyte cultures. J Neurochem 2016; 138: 74-85.</Citation>
</Reference>
<Reference>
<Citation>Xia H, Lazartigues E. Angiotensin-converting enzyme 2: central regulator for cardiovascular function. Curr Hypertens Rep 2010; 12: 170-175.</Citation>
</Reference>
<Reference>
<Citation>Conde Cardona G, Quintana Pájaro LD, Quintero Marzola ID, et al. Neurotropism of SARS-CoV 2: mechanisms and manifestations. J Neurol Sci 2020; 412: 116824.</Citation>
</Reference>
<Reference>
<Citation>Sharifi-Razavi A, Karimi N, Rouhani N. COVID 19 and intracerebral hemorrhage: causative or coincidental? New Microb New Infect 2020; 35: 100669.</Citation>
</Reference>
<Reference>
<Citation>Netland J, Meyerholz DK, Moore S, et al. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol 2008; 82: 7264-7275.</Citation>
</Reference>
<Reference>
<Citation>Lin L, Lu L, Cao W, et al. Hypothesis for potential pathogenesis of SARS-CoV-2 infection - a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect 2020; 9: 727-732.</Citation>
</Reference>
<Reference>
<Citation>Arentz M, Yim E, Klaff L, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington state. JAMA 2020; 323: 1612-1614.</Citation>
</Reference>
<Reference>
<Citation>Liu J, Cao R, Xu M, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov 2020; 6: 16.</Citation>
</Reference>
<Reference>
<Citation>Yao X, Ye F, Zhang M, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020; https://doi.org/10.1093/cid/ciaa237 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020; 20: 105949.</Citation>
</Reference>
<Reference>
<Citation>Gautret P, Lagier JC, Parola P, et al. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: an observational study. Travel Med Infect Dis 2020; 34: 101663.</Citation>
</Reference>
<Reference>
<Citation>Chen J, Liu D, Liu L, et al. A pilot study of hydroxychloroquine in treatment of patients with moderate coronavirus disease-19 (COVID-19). J Zhejiang Univ (Med Sci) 2020; 49: 215-219.</Citation>
</Reference>
<Reference>
<Citation>Chen Z, Hu J, Zhang Z, et al. Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. medRxiv 2020. https://doi.org/10.1101/2020.03.22.20040758 Not peer reviewed.</Citation>
</Reference>
<Reference>
<Citation>Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30: 269-271.</Citation>
</Reference>
<Reference>
<Citation>Taccone FS, Gorham J, Vincent JL. Hydroxychloroquine in the management of critically ill patients with COVID-19: the need for an evidence base. Lancet Respir Med 2020; 8: 539-541.</Citation>
</Reference>
<Reference>
<Citation>Yazdany J, Kim AHJ. Use of hydroxychloroquine and chloroquine during the COVID-19 pandemic: what every clinician should know. Ann Intern Med 2020; 172: 754-755.</Citation>
</Reference>
<Reference>
<Citation>Borba MGS, Val FFA, Sampaio VS, et al. Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: a randomized clinical trial. JAMA Netw Open 2020; 3: e208857.</Citation>
</Reference>
<Reference>
<Citation>Lane JCE, Weaver J, Kostka K, et al. Safety of hydroxychloroquine, alone and in combination with azithromycin, in light of rapid wide-spread use for COVID-19: a multinational, network cohort and self-controlled case series study. medRxiv 2020 https://doi.org/10.1101/2020.04.08.20054551 Not peer reviewed.</Citation>
</Reference>
<Reference>
<Citation>Geleris J, Sun Y, Platt J, et al. Observational study of hydroxychloroquine in hospitalized patients with Covid-19. N Engl J Med 2020; https://doi.org/10.1056/NEJMoa2012410 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Sheahan TP, Sims AC, Graham RL, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med 2017; 9: eaal3653.</Citation>
</Reference>
<Reference>
<Citation>Grein J, Ohmagari N, Shin D, et al. Compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med 2020; https://doi.org/10.1056/NEJMoa2007016 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Baden LR, Rubin EJ. Covid-19 - the search for effective therapy. N Engl J Med 2020; 382: 1851-1852.</Citation>
</Reference>
<Reference>
<Citation>Vaduganathan M, Vardeny O, Michel T, et al. Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19. N Engl J Med 2020; 382: 1653-1659.</Citation>
</Reference>
<Reference>
<Citation>Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for Covid-19 infection? Lancet Respir Med 2020; 8: e21.</Citation>
</Reference>
<Reference>
<Citation>Watkins J. Preventing a covid-19 pandemic. BMJ 2020; 368: m810.</Citation>
</Reference>
<Reference>
<Citation>Esler M, Esler D. Can angiotensin receptor-blocking drugs perhaps be harmful in the COVID-19 pandemic? J Hypertens 2020; 38: 781-782.</Citation>
</Reference>
<Reference>
<Citation>Ocaranza MP, Godoy I, Jalil JE, et al. Enalapril attenuates downregulation of angiotensin-converting enzyme 2 in the late phase of ventricular dysfunction in myocardial infarcted rat. Hypertension 2006; 48: 572-578.</Citation>
</Reference>
<Reference>
<Citation>Soler MJ, Ye M, Wysocki J, et al. Localization of ACE2 in the renal vasculature: amplification by angiotensin II type 1 receptor blockade using telmisartan. Am J Physiol Renal Physiol 2009; 296: F398-F405.</Citation>
</Reference>
<Reference>
<Citation>Klimas J, Olvedy M, Ochodnicka-Mackovicova K, et al. Perinatally administered losartan augments renal ACE2 expression but not cardiac or renal Mas receptor in spontaneously hypertensive rats. J Cell Mol Med 2015; 19: 1965-1974.</Citation>
</Reference>
<Reference>
<Citation>Jessup JA, Gallagher PE, Averill DB, et al. Effect of angiotensin II blockade on a new congenic model of hypertension derived from transgenic Ren-2 rats. Am J Physiol Heart Circ Physiol 2006; 291: H2166-H2172.</Citation>
</Reference>
<Reference>
<Citation>Vuille-dit-Bille RN, Camargo SM, Emmenegger L, et al. Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors. Amino Acids 2015; 47: 693-705.</Citation>
</Reference>
<Reference>
<Citation>Ishiyama Y, Gallagher PE, Averill DB, et al. Upregulation of angiotensin-converting enzyme 2 after myocardial infarction by blockade of angiotensin II receptors. Hypertension 2004; 43: 970-976.</Citation>
</Reference>
<Reference>
<Citation>Burrell LM, Risvanis J, Kubota E, et al. Myocardial infarction increases ACE2 expression in rat and humans. Eur Heart J 2005; 26: 369-375.</Citation>
</Reference>
<Reference>
<Citation>Burchill LJ, Velkoska E, Dean RG, et al. Combination renin-angiotensin system blockade and angiotensin-converting enzyme 2 in experimental myocardial infarction: implications for future therapeutic directions. Clin Sci (Lond) 2012; 123: 649-658.</Citation>
</Reference>
<Reference>
<Citation>Gu H, Xie Z, Li T, et al. Angiotensin-converting enzyme 2 inhibits lung injury induced by respiratory syncytial virus. Sci Rep 2016; 6: 19840.</Citation>
</Reference>
<Reference>
<Citation>Campbell DJ, Zeitz CJ, Esler MD, et al. Evidence against a major role for angiotensin converting enzyme-related carboxypeptidase (ACE2) in angiotensin peptide metabolism in the human coronary circulation. J Hypertens 2004; 22: 1971-1976.</Citation>
</Reference>
<Reference>
<Citation>Luque M, Martin P, Martell N, et al. Effects of captopril related to increased levels of prostacyclin and angiotensin-(1-7) in essential hypertension. J Hypertens 1996; 14: 799-805.</Citation>
</Reference>
<Reference>
<Citation>Perico L, Benigni A, Remuzzi G. Should COVID-19 concern nephrologists? Why and to what extent? The emerging impasse of angiotensin blockade. Nephron 2020; 144: 213-221.</Citation>
</Reference>
<Reference>
<Citation>Towler P, Staker B, Prasad SG, et al. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J Biol Chem 2004; 279: 17996-18007.</Citation>
</Reference>
<Reference>
<Citation>Lambert DW, Yarski M, Warner FJ, et al. Tumor necrosis factor-α convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme 2 (ACE2). J Biol Chem 2005; 280: 30113-30119.</Citation>
</Reference>
<Reference>
<Citation>Gill D, Arvanitis M, Carter P, et al. ACE inhibition and cardiometabolic risk factors, lung ACE2 and TMPRSS2 gene expression, and plasma ACE2 levels: a Mendelian randomization study. medRxiv 2020. https://doi.org/10.1101/2020.04.10.20059121 Not peer reviewed.</Citation>
</Reference>
<Reference>
<Citation>Lacoma A, Mateo L, Blanco I, et al. Impact of host genetics and biological response modifiers on respiratory tract infections. Front Immunol 2019; 10: 1013.</Citation>
</Reference>
<Reference>
<Citation>Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. J Med Virol 2020; 92: 424-432.</Citation>
</Reference>
<Reference>
<Citation>McGonagle D, Sharif K, O’Regan A, et al. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun Rev 2020; 3: 102537.</Citation>
</Reference>
<Reference>
<Citation>Bourgonje AR, von Martels JZH, Gabriëls RY, et al. A combined set of four serum inflammatory biomarkers reliably predicts endoscopic disease activity in inflammatory bowel disease. Front Med (Lausanne) 2019; 6: 251.</Citation>
</Reference>
<Reference>
<Citation>Luo P, Liu Y, Qiu L, et al. Tocilizumab treatment in COVID-19: a single center experience. J Med Virol 2020; https://doi.org/10.1002/jmv.25801 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Cellina M, Orsi M, Bombaci F, et al. Favorable changes of CT findings in a patient with COVID-19 pneumonia after treatment with tocilizumab. Diagn Interv Imaging 2020; 101: 323-324.</Citation>
</Reference>
<Reference>
<Citation>De Luna G, Habibi A, Deux JF, et al. Rapid and severe Covid-19 pneumonia with severe acute chest syndrome in a sickle cell patient successfully treated with tocilizumab. Am J Hematol 2020; https://doi.org/10.1002/ajh.25833 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Di Giambenedetto S, Ciccullo A, Borghetti A, et al. Off-label use of tocilizumab in patients with SARS-CoV-2 infection. J Med Virol 2020; https://doi.org/10.1002/jmv.25897 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Monteleone G, Sarzi-Puttini PC, Ardizzone S. Preventing COVID-19-induced pneumonia with anticytokine therapy. Lancet Rheumatol 2020; 2: e255-e256.</Citation>
</Reference>
<Reference>
<Citation>Richardson PJ, Corbellino M, Stebbing J. Baricitinib for COVID-19: a suitable teatment? - authors’ reply. Lancet Infect Dis 2020; https://doi.org/10.1016/S1473-3099(20)30270-X [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet 2020; 395: e30-e31.</Citation>
</Reference>
<Reference>
<Citation>Wu D, Yang XO. TH17 responses in cytokine storm of COVID-19: an emerging target of JAK2 inhibitor Fedratinib. J Microbiol Immunol Infect 2020; 53: 368-370.</Citation>
</Reference>
<Reference>
<Citation>Szkudelska K, Nogowski L, Szkudelski T. The inhibitory effect of resveratrol on leptin secretion from rat adipocytes. Eur J Clin Invest 2009; 39: 899-905.</Citation>
</Reference>
<Reference>
<Citation>Jang IA, Kim EN, Lim JH, et al. Effects of resveratrol on the renin-angiotensin system in the aging kidney. Nutrients 2018; 10: E1471.</Citation>
</Reference>
<Reference>
<Citation>Lian N, Zhang S, Huang J, et al. Resveratrol attenuates intermittent hypoxia-induced lung injury by activating the Nrf2/ARE pathway. Lung 2020; 198: 323-331.</Citation>
</Reference>
<Reference>
<Citation>Rotzinger DC, Beigelman-Aubry C, von Garnier C, et al. Pulmonary embolism in patients with COVID-19: time to change the paradigm of computed tomography. Thromb Res 2020; 190: 58-59.</Citation>
</Reference>
<Reference>
<Citation>Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost 2020; 18: 1023-1026.</Citation>
</Reference>
<Reference>
<Citation>Leidraad COVID-19 Coagulopathie. [Accessed 25 April 2020]. Available from: https://www.internisten.nl/sites/internisten.nl/files/berichten/Leidraad%20COVID-19%20coagulopathie%2016%20april%202020%20finale%20versie%20%28002%29_0.pdf [Article in Dutch].</Citation>
</Reference>
<Reference>
<Citation>Barrett CD, Moore HB, Yaffe MB, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19: a comment. J Thromb Haemost 2020; https://doi.org/10.1111/jth.14860 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Beun R, Kusadasi N, Sikma M, et al. Thromboembolic events and apparent heparin resistance in patients infected with SARS-CoV-2. Int J Lab Hematol 2020; https://doi.org/10.1111/ijlh.13230 [Epub ahead of print].</Citation>
</Reference>
<Reference>
<Citation>Connors JM, Levy JH. Thromboinflammation and the hypercoagulability of COVID-19. J Thromb Haemost 2020; https://doi.org/10.1111/jth.14849 [Epub ahead of print].</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>Pays-Bas</li>
</country>
<region>
<li>Basse-Saxe</li>
<li>Groningue (province)</li>
</region>
<settlement>
<li>Groningue</li>
<li>Hanovre</li>
</settlement>
<orgName>
<li>Université de Groningue</li>
</orgName>
</list>
<tree>
<country name="Pays-Bas">
<region name="Groningue (province)">
<name sortKey="Bourgonje, Arno R" sort="Bourgonje, Arno R" uniqKey="Bourgonje A" first="Arno R" last="Bourgonje">Arno R. Bourgonje</name>
</region>
<name sortKey="Abdulle, Amaal E" sort="Abdulle, Amaal E" uniqKey="Abdulle A" first="Amaal E" last="Abdulle">Amaal E. Abdulle</name>
<name sortKey="Bolling, Marieke C" sort="Bolling, Marieke C" uniqKey="Bolling M" first="Marieke C" last="Bolling">Marieke C. Bolling</name>
<name sortKey="Dijkstra, Gerard" sort="Dijkstra, Gerard" uniqKey="Dijkstra G" first="Gerard" last="Dijkstra">Gerard Dijkstra</name>
<name sortKey="Gordijn, Sanne J" sort="Gordijn, Sanne J" uniqKey="Gordijn S" first="Sanne J" last="Gordijn">Sanne J. Gordijn</name>
<name sortKey="Hillebrands, Jan Luuk" sort="Hillebrands, Jan Luuk" uniqKey="Hillebrands J" first="Jan-Luuk" last="Hillebrands">Jan-Luuk Hillebrands</name>
<name sortKey="Mulder, Douwe J" sort="Mulder, Douwe J" uniqKey="Mulder D" first="Douwe J" last="Mulder">Douwe J. Mulder</name>
<name sortKey="Navis, Gerjan J" sort="Navis, Gerjan J" uniqKey="Navis G" first="Gerjan J" last="Navis">Gerjan J. Navis</name>
<name sortKey="Timens, Wim" sort="Timens, Wim" uniqKey="Timens W" first="Wim" last="Timens">Wim Timens</name>
<name sortKey="Van Der Voort, Peter Hj" sort="Van Der Voort, Peter Hj" uniqKey="Van Der Voort P" first="Peter Hj" last="Van Der Voort">Peter Hj Van Der Voort</name>
<name sortKey="Van Goor, Harry" sort="Van Goor, Harry" uniqKey="Van Goor H" first="Harry" last="Van Goor">Harry Van Goor</name>
<name sortKey="Voors, Adriaan A" sort="Voors, Adriaan A" uniqKey="Voors A" first="Adriaan A" last="Voors">Adriaan A. Voors</name>
</country>
<country name="Allemagne">
<region name="Basse-Saxe">
<name sortKey="Osterhaus, Albert Dme" sort="Osterhaus, Albert Dme" uniqKey="Osterhaus A" first="Albert Dme" last="Osterhaus">Albert Dme Osterhaus</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CardioCovidV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000387 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000387 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CardioCovidV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32418199
   |texte=   Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32418199" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CardioCovidV1 

Wicri

This area was generated with Dilib version V0.6.35.
Data generation: Tue Aug 4 15:08:30 2020. Site generation: Wed Jan 27 11:23:02 2021